Скачать учебники

Тикунов В. С. Геоинформатика. Позиционирование. Автономное местоопределение. Дифференциальное местоопределение.

Скачать полную версию учебника (с рисунками, формулами, картами, схемами и таблицами) одним файлом в формате MS Office Word Скачать книгу

Позиционирование — это широко распространенный термин. Позиционирование — определение с помощью спутников ГСП параметров пространственно-временного состояния объектов, таки как координаты объекта наблюдения, вектор скорости его движения, разности координат двух объектов, точное время наблюдения. Частными случаями этого действия являются: местоопределение — нахождение координат пункта установки антенны спутникового приемника, и определение пространственного вектора — нахождение разностей координат двух пунктов, на которых установлены антенны спутниковых приемников. Рассмотрим некоторые способы позиционирования.

Способы местоопределения:
- автономный;
- дифференциальный.

Способы определения пространственного вектора:
- статический;
- кинематический.

Приведенное деление в известной мере условно. Если определены разности координат между двумя пунктами и известны координаты одного из этих пунктов, то нетрудно найти координаты и другого пункта. Однако нахождение пространственного вектора может быть самостоятельной целью. К тому же по пространственным векторам строят геодезические сети, вычисляют невязки в сетях и выполняют их обработку по методу наименьших квадратов. Аналогом этому в классической геодезии являются засечки и способ триангуляции. Засечкой определяют координаты пункта. Триангуляция — способ построения геодезической сети, конечной целью которого также являются координаты пунктов.
В позиционировании важным является понятие эпохи. Эпоха — опорная точка на шкале времени, фиксированный момент начала одновременного приема спутниковыми приемниками сигналов всех отслеживаемых спутников глобальной системы позиционирования.

Автономное местоопределение. При автономном способе пользователь работает с одним приемником и определяет свое местонахождение независимо от каких-либо других измерений. Местонахождение определяется пространственной линейной засечкой. Дальности измеряются кодовым методом. Геометрическая сущность засечки заключается в следующем. Если с некоторого пункта, положение которого в пространстве предстоит определить, измерить дальности до трех спутников и из них как из центров этими расстояниями как радиусами провести три сферы, то сферы в пространстве пересекутся в двух точках, при этом одна из этих точек будет искомым пунктом.
Таким образом, для определения трех координат (X, Y, Z) надо располагать тремя сферами. Это трехмерный случай местоопределения (3D). Однако в пространственной линейной засечке одной из сфер может быть земная сфера. Тогда будут определены только Две координаты — широта и долгота на земной сфере, проходящей через пункт наблюдения. Это двухмерный случай местоопределения (2D).
Практически, как уже отмечалось, измеряют не дальности, а псевдодальности. Отличие псевдодальности от истинной дальности может быть исключено после введения его в качестве дополнительного неизвестного в уравнения местоопределения. Поэтому, чтобы правильно вычислить координаты пункта по псевдодальностям, в случае 2D надо их измерять до трех, а в случае 3D — по крайней мере до четырех спутников с известными координатами.
Автономный способ местоопределения достаточно прост, однако весьма чувствителен ко всем источникам погрешностей. На точность влияют нестабильность частот используемых электромагнитных колебаний, сдвиги шкал времени на спутниках и в приемниках, погрешности в координатах спутников, аппаратурные погрешности приемников, задержки сигналов в ионосфере, тропосфере. Задержки в ионосфере в случае применения высокоточных кодов могут быть исключены измерениями на двух несущих волнах — L1 и L2. Измерения, выполненные на одной частоте, исправляются поправками. С этой целью в навигационное сообщение закладываются параметры модели ионосферы. Однако компенсация фактической задержки по параметрам модели ионосферы в лучшем случае составляет только 50%. Некомпенсированные задержки могут искажать псевдодальности до 10 м. Поправки могут вноситься и для компенсации задержек в тропосфере. Чтобы ослабить их влияние, сигналы спутников принимают и обрабатывают лишь тогда, когда спутники находятся не ниже 10-15° над горизонтом. В этом случае задержки радиоволн в тропосфере обычно менее 10 м. Точность также снижается из-за явления многолучевости: в приемник приходят волны не только непосредственно от спутника, но и переотраженные от земной поверхности и вблизи расположенных объектов. При кодовых измерениях погрешности из-за многолучевости могут исчисляться несколькими метрами.
Важным показателем качества местоопределения является геометрический фактор (ГФ). Он характеризует потери точности, обусловленные геометрией взаимного расположения спутников и приемника. Координаты определяются с наибольшей точностью, когда спутники равномерно распределены на небосводе. Точность снижается в десятки и сотни раз, если все спутники приближаются к одной плоскости.
При однократных замерах точность определения координат при ГФ=2 и менее оценивается предельной погрешностью порядка +(15-30) м. Точность автономного способа повышают продолжительными (до 10-15 мин) наблюдениями и совместной обработкой всех результатов измерений.

Дифференциальное местоопределение. В отличие от автономного этот способ требует, чтобы измерения выполнялись одновременно двумя приемниками. Один приемник располагают на пункте с известными координатами. Его называют базовой станцией, опорной станцией или контрольно-корректирующей станцией (ККС)-Другой, мобильный, приемник размещается на определяемой точке.
Поскольку координаты ККС известны, их можно использовать для сравнения со вновь определяемыми координатами и находить на этой основе поправки для мобильной станции. Способ тем точнее, чем меньше расстояние от подвижного приемника до ККС.
Существует несколько способов коррекции. При кодовых измерениях поправки могут вводиться как в псевдодальности, так и в координаты. В первом случае все измеренные на базовой станции псевдодальности сравнивают с расстояниями, вычисленными по известным координатам спутника и станции, и определяют их разности. Эти разности, так называемые дифференциальные поправки, передаются на мобильную станцию, например, с помощью дополнительного цифрового радиоканала связи. Мобильная станция, получив дифференциальные поправки, исправляет свои измеренные псевдодальности и по ним вычисляет координаты. В другом способе ККС вычисляет разности между известными координатами и определенными в автономном режиме, и ими исправляются координаты на мобильной станции. В этом случае важно, чтобы оба приемника измеряли псевдодальности до одних и тех же спутников. Поправки могут вводиться и в режиме постобработки — при обработке после измерений.
Задержки в приемнике, обусловливающие отличие псевдодальностей от дальностей, исключаются таким же путем, как и в автономном режиме — по наблюдениям четырех и более спутников.
Точность дифференциального способа при кодовом методе измерения дальностей зависит от типа приемника, программного обеспечения и колеблется в диапазоне от дециметров до нескольких метров. Дифференциальные коррекции применяют и к фазовым измерениям, при этом точность повышается до 1-5 см.
В мире существует множество базовых станций, которые передают дифференциальные поправки в стандартном международном формате RTCM SC-104. Организованы службы, передающие поправки через спутники связи и Интернет. В мире действуют различные навигационные дифференциальные подсистемы (ДПС). Основу ДПС составляет сеть ККС. На ее пунктах собирается информация со спутников и передается в центр управления для совместной обработки и нахождения дифференциальных поправок. После этого поправки загружаются на геостационарные спутники, откуда передаются пользователям.
Известна ДПС EGNOS (European Geostationary Navigation Overlay Service), корректирующая информация с которой передается потребителям через геостационарные спутники AORE (Atlantic Ocean Region East) и IOR (Indian Ocean Region). Североамериканский континент и Северную Атлантику обслуживает ДПС WAAS (Wide Area Augmentation System), а Японию и северную часть Тихого океана — ДПС MSAS (Multifunctional Transport Satellite Augmenation System). Существуют спутниковые приемники, которые на обычную GPS-антенну способны принимать дифференциальные поправки спутников EGNOS, WAAS и MSAS и достигать метровой точности позиционирования.
Известна также глобальная система OmniSTAR, использующая распределенную по всему миру сеть станций для сбора информации со спутников GPS. Собранные данные передаются в три центра управления, откуда транслируются на борт одного из семи геостационарных спутников. Каждый спутник в пределах своей зоны обслуживания передает дифференциальные поправки пользователям, которые получают их по подписке. При одном варианте подписки пользователь получает дифференциальные поправки, оптимальные для данного местоположения приемника. Гарантируется субметровая точность. При другом, более дешевом варианте, дифференциальные поправки рассчитываются не на любую точку нахождения приемника, а только на одну, указанную пользователем. В настоящее время зона действия OmniSTAR охватывает весь мир, за исключением Гренландии, Канады и большей части России.

< Навигационное сообщение. Координатное обеспечение. Целостность системы

Содержание книги "Тикунов В. С. Геоинформатика."

Статическое позиционирование. Кинематическое позиционирование. >

Скачать полную версию учебника (с рисунками, формулами, картами, схемами и таблицами) одним файлом в формате MS Office Word Скачать книгу

При копировании информации обязательны прямые ссылки на сайт, а также на авторов книг.
Все книги являются собственностью их авторов и служат исключительно для ознакомления.
© Edu-Knigi.ru, 2011. © Дизайн и программирование от студии "ПСГ".